
JSC 38608

Deorbit Flight Software Demonstration
Project Summary

ENGINEERING DIRECTORATE

AEROSCIENCE AND FLIGHT MECHANICS DIVISION

15 January 1998

National Aeronautics and
Space Administration

Lyndon B. Johnson Space Center
Houston, TX

JSC 38608

Deorbit Flight Software Demonstration
Project Summary

Prepared By:

Denise M. DiFilippo
G. B. Tech, Incorporated

Approved By:

___________________________________ ___________________________________

David A. Petri James P. Ledet
GN&C Rapid Development Lab Manager Code Q RTOP Project Manager
Aeroscience and Flight Mechanics Division Aeroscience and Flight Mechanics Division
NASA/Johnson Space Center NASA/Johnson Space Center

Concurred By:

___________________________________ ___________________________________

Aldo J. Bordano, Chief Karen D. Frank, Chief
Aeroscience and Flight Mechanics Division GN&C Development & Test Branch
NASA/Johnson Space Center Aeroscience and Flight Mechanics Division

NASA/Johnson Space Center

This Page Intentionally Blank

Deorbit Flight Software Demonstration Project Summary
15 January 1998

Deorbit Flight Software Demonstration Project Summary
15 January 1998

Table of Contents

Section Page

1.0 Introduction ... 1

2.0 Project Description ... 2

2.1 Scope ...2

2.2 Deliverables ..3

2.2.1 Flight Software ..3

2.2.2 Environment Simulation ..6

2.2.3 Application Programming Interface ..6

2.2.4 Reconfigurable Mock-up ...7

2.2.5 BEACON version of Flight Software ...7

3.0 RDL Process and Infrastructure Advances .. 8

3.1 Using the RDL Real-Time Network ..8

3.1.1 Web Based Test Documentation ..8

3.1.2 Configuration Management ..9

3.1.3 Error Reporting and Tracking ...9

3.1.4 On-Line Metrics Data Collection ...9

3.1.5 Documentation ...9

3.2 Inspections ...9

3.3 Testing Tools ..10

4.0 IV&V (Independent Verification and Validation) 11

5.0 Metrics Program .. 12

6.0 Metrics Results.. 13

7.0 Conclusions... 20

Deorbit Flight Software Demonstration Project Summary
15 January 1998

Figures

Figure Page

1 Deorbit GN&C Event Timeline...2
2 Deorbit Flight Software Test Configuration..5
3 GN&C RDL Network Architecture..8
4 Flight Software Source Lines of C Code ...13
5 Flight Software plus Simulation SLOC ..13
6 MatrixX Block Counts (Flight Software)...14
7 MatrixX Block Counts (Flight Software plus Simulation)14
8 Project Staffing Hours..15
9 Development Progress ..15

10 Guidance Module Run-Time Performance ..16
11 Control & Navigation Run-Time Performance ...16
12 Size of Executable Flight Software (1 of 2) ...17
13 Size of Executable Flight Software (2 of 2) ...17
14 Discrepancy Report Open Duration...18
15 Discrepancy Report Status..18
16 Software Complexity..19

Tables

Table Page

1 Project Cycles ...4
2 Metrics Collected ..12
3 CHECKPOINT Model Input ..21

Deorbit Flight Software Demonstration Project Summary
15 January 1998

Acronyms and Abbreviations

AFMD Aeroscience and Flight Mechanics Division
API Application Programming Interface
COTS commercial, off-the-shelf
EGI Embedded GPS/INS
FCOS Flight Control Operating System
FSSR Shuttle Flight Subsystem Software Requirements
FY Fiscal Year
GN&C Guidance, Navigation & Control
GPS/INS Global Positioning System/Inertial Navigation System
HIL hardware-in-the-loop
ISO International Standards Organization
IV&V Independent Verification and Validation
JSC Johnson Space Center
NASA National Aeronautics and Space Administration
OMS Orbital Maneuvering System
RDL Rapid Development Laboratory
SLOC Source Lines of Code

This Page Intentionally Blank

Deorbit Flight Software Demonstration Project Summary
15 January 1998

Deorbit Flight Software Demonstration Project Summary Section 1.0 Introduction
15 January 1998

Page 1

1.0 Introduction

The National Aeronautics and Space Administration (NASA) is studying the feasibility of
making major upgrades to the Space Shuttle, including the Shuttle avionics. A decision to
upgrade the avionics hardware could carry with it the need to upgrade the onboard flight
software and the associated ground based test, training and support software and hardware
systems.

What is the best overall approach if such a software system upgrade is required? One
possibility would be to take advantage of this opportunity to rewrite the flight software using
modern tools, technology and techniques. It is difficult to accurately evaluate the potential
impact of such a large and unique effort, in costs, schedules and risks, although it certainly
would be a very large and complex endeavor.

The Aeroscience and Flight Mechanics Division (AFMD) at NASA’s Johnson Space Center
(JSC) Engineering Directorate is exploring ways of producing Guidance, Navigation & Control
(GN&C) systems more efficiently and cost effectively. A significant portion of this effort is
software development, integration, testing and verification.

A natural synergy thus exists, in which AFMD could apply their evolving facilities and
techniques while providing empirical data to the analysis of effort and risk involved in
upgrading the Orbiter flight software.

AFMD has established the GN&C Rapid Development Laboratory (RDL), a hardware/software
facility designed to take a GN&C design project from initial inception through hardware-in-the-
loop (HIL) testing and perform final GN&C system verification. The operations approach for
the RDL emphasizes the use of commercial, off-the-shelf (COTS) software products to
implement the GN&C algorithms in the form of graphical data flow diagrams, to automatically
generate source code from these diagrams and to execute the software in a real-time, HIL
environment, following a Rapid Development methodology.

The Flight Software Demonstration Project constructed a core team of systems, software, and
GN&C domain experts. The team identified a significant yet manageable subset of the Space
Shuttle GN&C onboard flight software, the deorbit flight phase, to implement and demonstrate.
Making use of the facilities and philosophy of the RDL, the GN&C application software was
designed, implemented, and tested. Multiple software engineering environments were
explored and compared. Areas where the RDL processes and infrastructure needed
augmentation or improvement were identified, and these evolved along with the flight software
itself, throughout the project. The resulting flight software was released for Independent
Verification and Validation (IV&V), and has been widely demonstrated to NASA management.
The final demonstration included pilot-in-the-loop capability and OMS actuator in the loop,
with the flight software executing on a target flight computer.

Page 2

Section 2.0 Project Description Deorbit Flight Software Demonstration Project Summary
15 January 1998

2.0 Project Description

2.1 Scope

The team limited the scope of this effort to implementing the GN&C functions for a single
mission phase only. The deorbit phase was chosen. This phase had not previously been
addressed in the RDL, so it would increase our knowledge and add to our library of core
functions, while providing a blank development slate for a relatively pure test of the capabilities
of the approach.

While the software is planned to have wider application to general vehicle deorbit, Shuttle
operations were chosen as the target environment, both to provide input to the Orbiter
Upgrades project and to take advantage of a great deal of specific data pertaining to shuttle
operations already available to the team. The deorbit phase, in Shuttle operations, is from the
selection of the Deorbit/Entry software (Ops 3) to Entry Interface.

The operations demonstrated correspond to three major modes of Shuttle operations. These
are MM301 (Deorbit Coast), MM302 (Deorbit Execution), and MM303 (Pre-Entry Monitor).

Figure 1. Deorbit GN&C Event Timeline

7

6

53

2
TGT
LD

MNVR
TO

BURN

TIG

OMS
C/O

MNVR
TO
EI

EI

Event

1

2

3

4

5

 Description

MM 301 - Simulation Start

Deorbit Target Load

Maneuver to Burn Attitude

OMS Burn Ignition

OMS Burn Cut-Off

0:00

0:30

1:30

5:00

9:03

4

MM301

1

Elapsed Time (typical)

Deorbit Flight Software Demonstration Project Summary Section 2.2 Deliverables
15 January 1998

Page 3

The design and implementation assumes little modification of the current Shuttle GN&C
Functional Subsystem Software Requirements (FSSRs). The primary change is the
assumption of the availability of GPS/INS (Global Positioning System/Inertial Navigation
System) sensor data, which reduces the state propagation requirements. Also, no alignment
from the star tracker was included.

Subsets of all various flight functions are implemented in order to demonstrate and assess the
process for all components of a GN&C software build. A detailed presentation of the functions
and capabilities provided can be found in JSC-38601, GN&C Deorbit Flight Software
Description Document (Demonstration Project).

The objectives of the project were:
• Prototype an improved process for flight software development and verification
• Develop an initial set of “Next-Generation” flight software for Shuttle Orbiter Upgrades
• Demonstrate software commonality and evaluate multiple tools, languages, target

platforms and real-time operating systems
• Execute GN&C Flight Software on candidate Orbiter Upgrades avionics architecture
• Demonstrate code quality through Quality Assurance and Independent Verification

and Validation assessments

2.2 Deliverables

The following are the major deliverables developed for this project:
• Shuttle Orbiter GN&C application flight software source code and executable
• environment simulation
• application program interface
• configurable real-time test environment
• advanced displays
• alternate flight software (using BEACON)

Other significant project accomplishments included:
• developing a single-string, avionics flight computer prototype using commercial parts

and standards
• integrating and executing the hardware, simulation, and flight software with a pilot-in-

the-loop, in real-time
• inspecting and documenting the software
• performing unit, module and system level testing
• performing independent validation and verification of the software
• putting fundamental software infrastructure in place for multiple projects

2.2.1 Flight Software

The flight software was mostly developed using the ISI MatrixX tool suite (including Xmath,
SystemBuild and Autocode). Source code was generated from MatrixX block diagrams, using
the autocoder. The autocoder can produce both C and Ada code. For this project, code was

Page 4

Section 2.2.1 Flight Software Deorbit Flight Software Demonstration Project Summary
15 January 1998

primarily generated in C, and the C code version was the one that went through formal testing
and IV&V. (Some versions were also coded in Ada and tested informally; though time
limitations precluded exhaustive testing, preliminary results indicated that the C and Ada
autocode are comparable.) Some functions were written directly in C, and then imported into
the MatrixX environment as “User code blocks”.

The flight software developed for this project includes GN&C functions for Space Shuttle major
modes (MM) 301 (Deorbit Coast), 302 (Deorbit Execution), and 303 (Pre-Entry Monitor),
which encompass operations from Ops 3 to Entry Interface. The software supports both
automatic and manual (pilot-in-the-loop) capabilities.

For requirements, the team assumed that we would reproduce the functionality specified in
the related FSSRs, with three exceptions. Navigation functions would be written to take
advantage of the availability of GPS/INS sensors. Some interfaces to other subsystems would
not be implemented, since this is a stand-alone GN&C deorbit module demonstration. And
The application software was run under VxWorks real-time operating system, using an auto-
generated real-time scheduler instead of the Orbiter Flight Control Operating System (FCOS).

The system was developed in evolutionary cycles, with each cycle demonstrating end-to-end
functionality at increasing levels of fidelity, quality and confidence. The major cycles and their
descriptions are summarized in table 1 below.

.

Table 1. Project Cycles

Date
Completed Version Description

11/06/96 0.1 Preliminary release; minimum functionality; emphasized system
architecture and connectivity, system integration of closed loop
flight software, and design simulation

12/08/96 0.2 Preliminary release of partially functional flight software to support
more extensive platform and autocoder tests and integration of the
flight software with the high fidelity real-time simulation

12/20/96 0.5 Intermediate release, including full automatic mode flight software
functionality; automatic nominal capabilities

03/19/97 0.6 Full functionality (within scope) development completed, including
manual modes, limited OMS RM, and support of full deorbit
maneuver display. This version underwent formal inspections.
Also used to support development of test and verification scripts.

03/31/97 0.65 Same functionality as version 0.6. Inspections completed. All
major defects (identified in inspections) corrected. This version
used for component testing.

06/06/97 0.7 All remaining defects (identified in inspections) corrected.
Component testing completed and defects corrected. This version
used for integrated subsystem and system testing.

Deorbit Flight Software Demonstration Project Summary Section 2.2.1 Flight Software
15 January 1998

Page 5

The flight software load is a complete, stand-alone system capable of flying the GN&C deorbit
modes identified, both in automatic and manual flight configurations. The real-time software
interacts with the environment simulation, and has been demonstrated, using a reconfigurable
test workstation, with both hardware and pilot in the loop. In the mock-up, the flight software
sends data to the displays, and takes input from touch screens, keyboard, and a hand
Controller.

Figure 2. Deorbit Flight Software Test Configuration

09/12/97 0.8 Subsystem and system testing completed and defects corrected.
This version released for IV&V

12/17/97 0.9 IV&V completed and defects corrected.

Table 1. Project Cycles

Date
Completed Version Description

Real-Time
Simulation

Env Models

Flat Panel
Displays

PC

SGI

Flight Processor
VME PPC604

VxWorks

O/S GN&C FSW

Data Display
Command Data

Scene
Generation

Data

State Data

Commands

Reconfigurable
Operator-in-the-loop

Workstation

OMS/TVC
Actuators

OMS/TVC Data
(Digital)

OMS/TVC
Commands

(Digital)

Remote Interface Unit
VME PPC604

VxWorks

OMS/TVC
Commands

(Analog)

Ground
Controller
Displays

Telemetry

Hand

Controller

Hand

Controller
➔➔

Page 6

Section 2.2.2 Environment Simulation Deorbit Flight Software Demonstration Project Summary
15 January 1998

2.2.2 Environment Simulation

Testing with a high fidelity real time environment simulation is critical to the ability to verify and
validate the flight software and document its quality.

The environment models include the vehicle dynamics, and the sensor and effector hardware,
as well as physical models of the planet (e.g. gravity and atmosphere).

Two distinct simulations were developed for this project; a low fidelity development simulation
and a high-fidelity simulation for use in formal testing and demonstrations.

The low fidelity development simulation was built in the MatrixX System Build environment. It
was used to support closed-loop simulation within the MatrixX environment. This simulation
supported developer testing of the software prior to autocoding and integration testing.

The high fidelity simulation used the TRICK simulation environment, which was developed and
is supported by the Automation, Robotics and Simulation Division (ER) at JSC. TRICK is an
environment shell that takes as input environment models written in C and builds an
executable simulation environment. Associated with TRICK is a library of models that previous
and current users developed and then made available for reuse. (At the beginning of this
project, the models available in the TRICK library were primarily on-orbit models, since this is
where TRICK had seen the greatest application to date.)

TRICK was installed in the RDL, and members of the core team became familiar with it. New
models were developed as needed to support the deorbit environment. In particular, OMS
(Orbital Maneuvering System) and EGI (Embedded GPS/INS) models were developed, and
other effector and sensor models were augmented as needed. The ENIGMA graphics library
was ported to the RDL as well. The team also integrated a new prototype display, created by
the JSC RAPIDS lab with human factors engineering from Space and Life Sciences.

Both batch and real-time simulation capabilities are available. The real-time simulation has
been integrated with a reconfigurable operator-in-the-loop workstation and with advanced
real-time displays.

The environment models that were developed will be used to augment existing model libraries
and be available for reuse in other RDL projects and by other TRICK users.

2.2.3 Application Programming Interface

An important feature of our rapid development paradigm is that, as hardware becomes
available, it is included in the test loop. Thus, for example, the deorbit flight software initially
ran with simulated operator inputs, but as our test environment evolved we were able to
substitute actual real-time operator inputs. OMS actuators were also initially simulated but
later actual hardware was included in the test loop. As another example, early versions ran on
general purpose workstations but later software was ported to a real-time platform. Eventually
the real-time workstation and hardware and operator in the loop environments were integrated
via reflective memory.

To facilitate multiple, evolving operational and test environments, an Application Programming
Interface (API) was developed. By standardizing the interface, moving among configurations

Deorbit Flight Software Demonstration Project Summary Section 2.2.4 Reconfigurable Mock-up
15 January 1998

Page 7

is relatively transparent to the flight software. As new equipment is added to the environment,
most of the changes are limited to adding new modules to the API.

The API is used to partition the application code from the communication interfaces. This
partitioning, coupled with the use of POSIX coding standards, allows the flight software to be
easily ported and interfaced to the operating system, databuses, and hardware. This well-
defined interface allowed easy switching among different databuses (e.g., reflective memory,
ethernet), workstations, hardware, etc.

2.2.4 Reconfigurable Mock-up

The RDL reconfigurable mock-up includes compartments and connections for a variety of
equipment useful in a piloted test and simulation environment. These include workstation
displays, data displays, touch screens, keyboards and hand-controllers, which all can be
linked into the RDL real-time network to set up the desired test, simulation or demonstration.

Much of the current capability and flexibility of this facility evolved with this project.

2.2.5 BEACON version of Flight Software

BEACON is an alternative flight software automatic code generation tool under consideration
for use in the RDL. To get some idea of the relative merits of Beacon, a parallel implementation
effort was undertaken using Beacon.

The Beacon development effort was less comprehensive than the MatrixX effort in several
respects. No formal documentation effort was performed. No formal quality assurance
functions (e.g., inspections) were performed. Testing was informal and not comprehensive,
compared to the MatrixX version. IV&V was not performed.

The Beacon effort was able to leverage off of the MatrixX effort as well, since a significant
portion of the MatrixX effort had been completed before beginning development with Beacon.
Significant understanding and clarification of requirements, based on the existing FSSRs, had
already been achieved by the team and was not repeated for Beacon implementation. Overall
architecture, as well as test cases, test data, and detailed logic (for example, jet select logic)
were also carried over to this development effort.

Data handling in the two languages proved to be significantly different. MatrixX is more data
flow oriented; data are passed primarily via calling arguments to software modules. The
Beacon environment uses global data structures in order to make data available to the
modules.

As of this writing, the BEACON version of the Flight Software has been completed, but not
fully tested in the real-time environment.

Page 8

Section 3.0 RDL Process and Infrastructure Advances Deorbit Flight Software Demonstration Project Summary
15 January 1998

3.0 RDL Process and Infrastructure Advances

The long term vision for the Rapid Development Laboratory is to be a center-of-excellence for
rapid hardware and software development, and to be the facility of choice for real-time,
hardware-in-the-loop simulation and end-to-end system verification, with special emphasis on
guidance, navigation and control.

This project helped us to better understand the infrastructure issues remaining in order to
meet this vision. Over the course of, and in conjunction with, this project, several
enhancements to RDL infrastructure were achieved, as described below.

3.1 Using the RDL Real-Time Network

A recurring theme in the evolving RDL infrastructure is the improved availability and use of
tools and documents on-line over the lab network, accessible directly from each engineering
workstation. Internal RDL and project specific applications and web pages are integrated with
tools and processes to improve the ease, access and accuracy of project information. The
implementation of a reflective memory ring and the use of commercial products and standards
(e.g., databuses, operating systems) contribute to the usefulness and adaptability of the RDL.

Figure 3. GN&C RDL Network Architecture

3.1.1 Web Based Test Documentation

Test requirements were written and put on the project web pages. The test cases are also
available on the web, and are cross referenced, through hyperlinks, to the test requirements.

AC-100
PC RDL-Hawk Kemah PPC604

VxWorks

Genoa

Thunder

Laguna

PC PC
PPC604

VxWorks

Candidate

#1

Candidate

#2

Candidate

#N

Sun

PPC604

VxWorks

GPS SG Rate
Table

HP

HP

ISI Harris SGI VME Chassis

VME ChassisVME Chassis

EtherNet
VMIC

429

1553

1553

488

X-35 68040

VxWorks

VME Chassis

To
Mockup

To
Sensors/
Effectors

To
Sensors/
Effectors

Room 2115

Room 1169 Room 1123

ScramNet

EtherNetScram Net
Scram Net

Ether Net

Deorbit Flight Software Demonstration Project Summary Section 3.1.2 Configuration Management
15 January 1998

Page 9

As tests are run, the output files from the tests are transferred to an area which is also cross
referenced to the test plan. An oversight script is available which can sample these sites on
demand and produce a current report of test status, including completion status, test results,
and pending actions. The test requirements, test plan, test data and status reports are
available to all team members.

3.1.2 Configuration Management

The project team chose the COTS product ClearCase to use for configuration management.
ClearCase runs on the RDL workstations, and is accessible across the lab. It readily
accommodates the evolutionary nature of Rapid Development, tracking all versions. The test
result files are also cross referenced to the managed version numbers.

Because the tool is so well integrated with the development environment, there is very little lag
between when a piece of code is completed and when it is under configuration management
and available to the rest of the team.

The flight software is currently under configuration management. For the modules developed
using MatrixX, this includes both the MatrixX blocks and the code generated by the MatrixX
autocoder. Plans are to expand the process to include the environment simulation,
documentation, and test data under configuration management as well.

3.1.3 Error Reporting and Tracking

The COTS tool ClearDDTS was used for error reporting and tracking. It too runs on the
workstations and is accessible across the lab. Testers can enter discrepancy data from the
same terminal where they do the tests. When discrepancies are reported, electronic mail
automatically notifies those who need to know about the error. DDTS integrates well with
ClearCase, so that errors and corrections are correlated with software versions. Standard and
customized error reports are available and easy to generate. Current status information is
available to the team on demand. Data can be entered, tracked and reported across multiple
projects.

3.1.4 On-Line Metrics Data Collection

Project team members report their project hours, by work category, directly to the metrics data
base using an application developed in the RDL. A web page gives access to the data
collection form. Once a team member has entered data, it is automatically included in the data
base from which reports are generated. (See sections 5 and 6 for additional information
regarding the metrics program and data collected.)

3.1.5 Documentation

Current versions of all project documents are available through the project web pages.

3.2 Inspections

Formal inspections were performed on the flight software.

Page 10

Section 3.3 Testing Tools Deorbit Flight Software Demonstration Project Summary
15 January 1998

This was a new process both in the RDL and to most members of the project team. To start
the effort, the team was assisted by outside personnel who were experienced with performing
inspections. A process and forms were developed. Team members received a brief training
overview.

The initial inspections were organized and moderated by the experienced trainers. This
responsibility was quickly taken over by the development team.

Much of the code was generated by an autocoder, from MatrixX blocks. Inspections were
performed on these blocks, not the generated source code. More traditional code inspections
were performed for those modules that were not developed in MatrixX, primarily the API code.

Inspection reports are available on the project web pages.

3.3 Testing Tools

We identified and investigated several advanced tools for improving test capability.

X-ATAC is a test coverage evaluation tool developed by Bellcore. Team members were trained
in its use. A pre-release copy was provided by Bellcore and installed in the RDL. Unit tests for
most modules included this useful analysis. The analysis shows the percent of code that was
executed during a test suite. It also can show specifically which lines of code were not
executed and can be used to determine what additional tests can best improve coverage.

The McCabe toolset analyses code complexity in a variety of ways (e.g., cyclomatic
complexity, essential complexity, module design complexity, and others). To effectively use
these tools requires considerable understanding of both the theory and implementation of
complexity analysis. A demonstration copy of the toolset was obtained and installed in the
RDL. An initial analysis was performed on a subset of the flight software. It was concluded that
additional investigation of the toolset is recommended in order to establish guidelines and
procedures for using these tools. For example, which complexity measures are important for
flight software? What complexity values are desirable? What actions are recommended if
measures exceed desirable levels?

Another toolset, Logiscope, was identified and investigated. The RDL does not own this tool
or have a demonstration version installed. However, the SR&QA group at JSC has a copy, is
familiar with its use, and assisted project team members in running some analysis of our
software using Logiscope. The tool functionality of Logiscope appears approximately the
same as for the McCabe toolset.

What is clear is that, in a Rapid Development environment, these and possibly other advanced
tools can be powerful development aids as well as test analysis tools. A long term goal is to
identify the most effective types of tools, establish guidelines and procedures for their use, and
give them to developers for use in improving quality of software as it is developed. We want to
develop quality as much as possible and, in the long run, depend less on testing the quality in
after development.

Deorbit Flight Software Demonstration Project SummarySection 4.0 IV&V (Independent Verification and Validation)
15 January 1998

Page 11

4.0 IV&V (Independent Verification and Validation)

To help evaluate the quality of the flight software, Independent Verification and Validation
(IV&V) was performed. The verifiers were requirements analysts and performance verifiers
from the Shuttle Flight Software performance and verification organization. The effort focused
on closed loop testing of the deorbit software. The time available for IV&V was severely limited;
three testers began with limited familiarity with the software and simulation, and completed
their analysis in one month.

The results of this effort should be considered more preliminary than definitive. Still, the
testers were able to make significant observations and recommendations in addition to
discovering several discrepancies in the flight software.

Among the general observations and recommendations are:
• Incorporating additional testing capability into the simulation and flight software,

including enhanced ability to insert specific test scenarios, would be very useful
• several areas of the flight software that were considered out-of-scope for this project,

may in fact be more difficult implementation and testing challenges. These include, for
example, timing requirements, complete crew interfaces, sequencing and multipass
operations, and redundancy management.

• areas that should be tested further include off-nominal crew operations, data values at
singularities, and timing variances

• testers desired a better interface for changing parameters and collecting data

The IV&V effort identified a total of 21 discrepancies. Among these, 11 were associated with
the flight software. (The remainder were related to the simulation or user interface.) Among
the flight software discrepancies, there were 0 at level one (most severe), 5 at level 2, and 6
at level 3.

Overall, the testers concluded that “the application of the autocode generator to the Shuttle
deorbit flight phase has had a good start.” The IV&V effort was documented in “Space Shuttle
Programs, Level 7 GN&C Flight Software Performance Verification, Independent Verification
and Validation of Deorbit Software” (Hickey, Ware, Zophy & Mills; Lockheed Martin;
September 30, 1997), which is available on the project web pages

Page 12

Section 5.0 Metrics Program Deorbit Flight Software Demonstration Project Summary
15 January 1998

5.0 Metrics Program

To begin a metrics program in the RDL, we concentrated on collecting development
engineering metrics. (A long term goal is to add sustaining engineering and project
management metrics.) Details of the objectives, strategy, selection and definitions for the
metrics program plan can be found in JSC-38605, Guidelines for the Rapid Development of
Software Systems.

For this project, the following table shows the metrics that were collected.

Table 2. Metrics Collected

For some of these measurements, we do not yet have sufficient historical data base to know
how or if they will prove useful for planning or managing a Rapid Development project, or for
evaluating its quality. An example is MatrixX block counts. By collecting this data, we hope to
learn more about effective metrics in a Rapid Development environment.

Metric Classification Description

Software Size The SLOC in the system that must be tested and
maintained

Software Size MatrixX Block Counts

Software Size Size of executables

Software Staffing Number of engineering and first line management
personnel involved in system development

Development Progress Number of modules successfully completed from design
through test

Software Performance Execution times

Test Case Completion Percent of test cases successfully completed

Discrepancy Report Open
Duration

Time lag from problem report initiation to problem report
closure

Fault Density Open and total defect density over time

Design
Complexity

Number of modules with a complexity greater than an
established threshold

Deorbit Flight Software Demonstration Project Summary Section 6.0 Metrics Results
15 January 1998

Page 13

6.0 Metrics Results

The metrics data collected for this project is presented in the following figures.

Figure 4. Flight Software Source Lines of C Code

Figure 5. Flight Software plus Simulation SLOC

Flight Software C-KSLOC

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
Weeks from Project Start

KLSLOC

KSLOC+Com

C
-K

S
LO

C

Flight Software + Simulation C-KSLOC

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Weeks from Project Start

KLSLOC

KSLOC+Com

C
-K

S
LO

C

Page 14

Section 6.0 Metrics Results Deorbit Flight Software Demonstration Project Summary
15 January 1998

Figure 6. MatrixX Block Counts (Flight Software)

Figure 7. MatrixX Block Counts (Flight Software plus Simulation)

Matrix-x Block Counts (FSW)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 10 20 30 40 50 60

Weeks from Project Start

EB

EB & SB

S
up

er
/E

le
m

en
ta

ry
B

lo
ck

s

Matrix-x Block Counts (FSW + Sim)

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

0 10 20 30 40 50 60

Weeks from Project Start

EB

EB & SBS
up

er
/E

le
m

en
ta

ry
B

lo
ck

s

Deorbit Flight Software Demonstration Project Summary Section 6.0 Metrics Results
15 January 1998

Page 15

Figure 8. Project Staffing Hours

Figure 9. Development Progress

Project Staffing Hours

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0 10 20 30 40 50 60

Weeks from Project Start

Simulation

Flight Software

Tech Intg

IV&V

S
ta

ffi
ng

 H
ou

rs

Development Progress

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Weeks from Project Start

Design
Code & Test

P
rin

ci
pa

l F
un

ct
io

ns

C
om

pl
et

ed
 (

%
)

Page 16

Section 6.0 Metrics Results Deorbit Flight Software Demonstration Project Summary
15 January 1998

Figure 10. Guidance Module Run-Time Performance

Figure 11. Control & Navigation Run-Time Performance

Execution Time as Per Cent of Duty Cycle :
GUIDANCE

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

V 0.5 V 0.6 V 0.65 V 0.7 V 0.8

Version

P
er

 C
en

t

Execution Time as Per Cent of Duty Cycle:
CONTROLS AND NAVIGATION

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

V 0.5 V 0.6 V 0.65 V 0.7 V 0.8

Version

P
er

 C
en

t

Deorbit Flight Software Demonstration Project Summary Section 6.0 Metrics Results
15 January 1998

Page 17

Figure 12. Size of Executable Flight Software (1 of 2)

Figure 13. Size of Executable Flight Software (2 of 2)

Size of Executable Code: chart 1 of 2

0

5

10

15

20

25

0.5 0.6 0.65 0.7 0.8

Version

K
ilo

 B
yt

es

.tdesc

.rodata

.data

Size of Executable Code: chart 2 of 2

0

200

400

600

800

1000

1200

1400

1600

0.5 0.6 0.65 0.7 0.8
Version

K
ilo

 B
yt

es

.text

.bss

total

Page 18

Section 6.0 Metrics Results Deorbit Flight Software Demonstration Project Summary
15 January 1998

Figure 14. Discrepancy Report Open Duration

Figure 15. Discrepancy Report Status

N
um

be
r

of
 D

R
s

Fault Density

0

10

20

30

40

50

60

Written Closed
Status

N
um

be
r

of
 D

R
s

Deorbit Flight Software Demonstration Project Summary Section 6.0 Metrics Results
15 January 1998

Page 19

Figure 16. Software Complexity

Project Software Complexity

0

20

40

60

80

100

 1-9 10-19 20-29 30-39 >39
McCabe Extended Complexity

N
um

be
r

of
 M

od
ul

es

Page 20

Section 7.0 Conclusions Deorbit Flight Software Demonstration Project Summary
15 January 1998

7.0 Conclusions

Recall that the stated project objectives were to:
• Prototype an improved process for flight software development and verification
• Develop an initial set of “Next-Generation” flight software for Shuttle Orbiter Upgrades
• Demonstrate software commonality and evaluate multiple tools, languages, target

platforms and real-time operating systems
• Execute GN&C Flight Software on candidate Orbiter Upgrades avionics architecture
• Demonstrate code quality through Quality Assurance and Independent Verification

and Validation assessments

This is an ambitious set. Yet all objectives were met and demonstrated by the project
deliverables. Clearly this project did not give definitive results in all of these areas. Just as
clearly, significant progress was made. The first of the stated objectives is the most difficult to
address with certainty.

Prototype an improved process for flight software development and verification

We began with a set of guidelines for rapid development, and expanded and improved on them
as the project required and our experience suggested. There is no doubt that the team
exercised a new methodology for this project, and that our efforts have improved on it. An
improved process should be better, faster, and/or cheaper in some quantifiable way. Our
engineering judgement supports the hypothesis that this method is an improvement over
traditional software development methodology when used to develop flight software. To a
certain extent, our metrics empirically support this conclusion.

One measure of the cost of the project is staff hours expended. Using this measure, the total
cost of developing the Deorbit GN&C flight software was 13,993 man hours (through Cycle
0.8) distributed over flight software, infrastructure and test rigs (simulation support), technical
management (Training, Programmatics, Configuration Management, Process, Technical
Meetings, et al.). This estimate does not include time allocated to the IV&V activities which are
expected to add an additional 900 to 1,400 man hours to the project cost, resulting in an
estimated total of about 15,000 to 15,500 man hours to develop approximately 56,000 lines of
code. To compare this to a conventional software development paradigm the software metrics
tool CHECKPOINT was used to estimate the cost to develop 56,000 lines of code subject to
the constraints shown in the table below. The CHECKPOINT metrics tool is commercially
available software marketed by Software Productivity Research to provide cost estimation and
other metrics support capabilities derived from a database of over 6,000 scientific, industrial,
and commercial projects.

Using these parameters, CHECKPOINT estimates 37,212 man hours would be required to
complete the project using traditional development techniques. The rapid development cost of
about 15,500 man hours is a reduction of 58% compared to the conventional development
cost.

Deorbit Flight Software Demonstration Project Summary Section 7.0 Conclusions
15 January 1998

Page 21

Table 3. CHECKPOINT Model Input

Approximately 80 discrepancy reports will be written against the Deorbit GN&C flight software
and API during unit, module, system and IV&V testing. This yields a defect density of about
1.4 defects per KSLOC. The CHECKPOINT data also estimates a defect density of about 13.5
defects per KSLOC. This implies an order of magnitude reduction.

These comparisons should certainly be interpreted in context; they do not prove superiority of
our rapid development methodology, but they strongly suggest it. Several factors no doubt
influenced these numbers in addition to development approach. For example, inefficiencies in
automatic code generation may inflate the lines of code above traditional expectations, making
productivity comparisons difficult. Minimal requirements and design activity was required, due
to existing FSSRs, and this likely decreased actual cost compared to expectations. And
additional testing might have uncovered more discrepancies. Moreover, the software is
completed only as defined by the project. That is, it is not really ready to fly. However, the
project also suffered from the burden of training team members in the use of the rapid
development methodology, use of development and test tools, and the GN&C flight software
requirements. As well, the RDL infrastructure to support the project was being determined and
implemented concurrent with the project. These influences likely inflated the overall cost of the
project.

Overall, the results are quite positive and support the continued evolution of the Rapid
Development Laboratory as a valuable facility, and the Rapid Development Methodology as
an effective approach for modern software development.

Category Class

Project nature New program development

Project scope Disposable prototype

Project Class Internal Program, for use at a single location

Primary project type Embedded or real time program

Secondary project type Scientific or mathematical program

Project goals for estimating Find the highest quality, with normal staff

New problem complexity Many difficult and complex calculations

New code complexity Fair structure, but with some complex paths/modules

New data complexity Complex data elements and data interactions

New code 56,227 lines of “C” source code

